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We present the current state of development of the sensor-equipped car MODISSA, with which Fraun-
hofer IOSB realizes a configurable experimental platform for hardware evaluation and software develop-
ment in the contexts of mobile mapping and vehicle-related safety and protection. MODISSA is based on
a van which has successively been equipped with a variety of optical sensors over the past few years, and
which contains hardware for complete raw data acquisition, georeferencing, real-time data analysis, and
immediate visualization on in-car displays. We demonstrate the capabilities of MODISSA by giving a
deeper insight into experiments with its specific configuration in the scope of three different applications.
Other research groups can benefit from these experiences when setting up their own mobile sensor system,
especially regarding the selection of hardware and software, the knowledge of possible sources of error,
and the handling of the acquired sensor data. © 2021 Optical Society of America

1. INTRODUCTION

A. Motivation and context

Optical sensor technologies and imaging are important areas of
applied optics. Optical sensing provides a contactless method
for acquiring information within a certain field-of-view. Besides
the use of cameras for photography or television, such sensors
can act as measuring devices for fast metric mapping of the
physical world (photogrammetry). Furthermore, optical sen-
sors form the basis for automatic perception (computer vision).
The natural reference thereby is the combined function of eye
and brain, which is to be reproduced or exceeded by technical
perception systems, for example to allow for automation and
control (robotics). Exceeding the natural example is achievable
at different stages, for example in the computing speed and re-
action time, the capacity for data storage or, above all, in the
specific characteristics of the applied optical sensor technology.
This may refer to the physical dimensions of the field-of-view,
the spectral sensitivity of the detector, or the use of “active sen-
sors” that measure the reflection of their self-generated signals
in the scene. An example of the latter is scanning or imaging

LiDAR (light detection and ranging), which uses laser pulses
to obtain a pointwise three-dimensional representation of the
environment.

There are many examples for the stationary use of optical
sensors and for the automatic interpretation of the associated
sensor data, e.g. sensors in industrial applications or surveil-
lance cameras. In the sense of the preface and in analogy to
human perception, however, the mobile sensor operation is of
special interest, since it is the only way to survey a larger area
(example: the mars rover “Perseverance”). Furthermore, a mo-
bile sensor platform with real-time data interpretation enables
self-related control of its movements by a computer (e.g., au-
tonomous driving). Research in this field is currently being
pursued with great effort. The driving force can primarily be
seen in economic interests, e.g. of data services and automotive
companies, but there is also politically driven support for these
future technologies. In addition, the military sector plays a role.

Everyone can conduct research on these topics using pub-
licly available datasets, without having to afford an own sensor-
equipped measurement and testing platform. Such datasets
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(A): 2x Velodyne HDL‐64E LiDAR

(B): 2x Velodyne VLP‐16 LiDAR

(C): 8x Baumer VLG‐20C.I (panoramic 
camera setup)

(D): General Dynamics Vector 50 pan‐
tilt head with 
‐ Jenoptik IR‐TCM 640 LWIR camera
‐ JAI CM 200‐MCL gray scale camera
‐ Jenoptik DLEM 20 laser rangefinder

(E) and (F): Applanix POS LV V5 520 
inertial navigation system (IMU, GNSS 
receiver, DMI)

(G): External WiFi antenna

Fig. 1. MODISSA at a glance: its appearance is characterized by a pan-tilt head, components of the inertial navigation system (INS),
and several optical sensors.

are mainly provided by research groups in academia and by
automotive companies to serve as standard benchmarks for per-
formance comparisons, e.g., KITTI or nuScenes (see Section 2).
However, datasets of this type can partially limit the intended
research, because the selection of sensors was not under one’s
own control. Moreover, pre-recorded datasets cannot form the
basis to study real-time situations in which immediate data in-
terpretation affects the settings or the subsequent trajectory of
the sensors. Such studies require an accessible research vehicle
that provides test and analysis functionalities for a wide range
of sensors and real-world operating conditions, which is why
many groups have set up and now use such vehicles.

B. Contribution of this paper

With “MODISSA” as shown in Figure 1, also Fraunhofer IOSB
implements a configurable research vehicle that serves as an
experimental platform for hardware evaluation and software
development in the contexts of mobile mapping and vehicle-
related safety and protection. Like a few companies and other re-
search groups, we provide some publicly available test datasets.
One particular example are mobile LiDAR scanning (MLS) data
acquired from road traffic in an urban area [1]. However, pre-
recorded benchmark datasets of this type have their limitations,
as just described, and furthermore, such datasets are meanwhile
available in sufficient quantity. In this paper, we instead describe
our empirical findings in setting up and operating the MODISSA
testbed over the past few years, and thus help others who intend
to build their own version of a similar mobile sensor system.
We provide a deeper insight into experiments in the context of
three different applications, demonstrating the multi-purpose
usability of our mobile sensor platform, and we discuss the pros
and cons of the specific sensor selection and configuration we
encountered in these applications.

After a brief review of related work in Section 2, we describe
our experiences in setting up and operating MODISSA in Sec-
tion 3. Three of our current research applications that benefit
from MODISSA as a working mobile sensor platform are de-
scribed in Section 4, with a summary of our respective lessons
learned at the end of each subsection. Finally, Section 5 contains
an overall discussion and some concluding remarks.

2. RELATED WORK

In the context of the MODISSA experimental system presented
here and examples of research conducted with it, three different
categories of related work can be mentioned:

(1) Work primarily concerned with the layout of experimental
systems for mobile data acquisition or autonomous opera-
tion.

(2) Publications of datasets in this context, that are made avail-
able to the research community and are intended to serve
as benchmarks for specific research tasks.

(3) Papers on research tasks and applications that require the
use of a mobile data acquisition system or vehicle-mounted
optical sensors.

From the user’s perspective, category (1) sets the stage for
category (2), which in turn forms the basis for the actually rele-
vant research in category (3). The latter covers applications from
which entire scientific branches have evolved. To name just a
few: situation awareness in road traffic, protection and driver
assistance functions for vehicles, or simultaneous localization
and mapping (SLAM). A comprehensive literature review on all
possible applications would exceed the scope of this paper. We
therefore limit this section to a selection of related work, mainly
concerning categories (1) and (2). Since this paper is intended to
be part of an institutional focus issue that gives an insight into
the work at Fraunhofer IOSB, we address category (3) by refer-
ring to a selection of our own previous publications throughout
the paper, where appropriate.

Regarding (1): The capabilities for mobile data acquisition
and computer-based interpretation of these data have greatly
improved since the beginning of the century, when the use of
digital sensors and powerful computers became realistically
possible and affordable. This can also be seen by continuously
increasing numbers of publications on this subject. In the above-
mentioned category (1) of related work, a distinction can again
be made between those dealing in particular with autonomous
driving and driver assistance (A) and those dealing with mobile
systems for surveying (B). With MODISSA, we can address real-
time processing, but we can also record and georeference all
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sensor data. We thus aim at a multi-purpose applicability for
research under both (A) and (B).

(A) Work on autonomously operating cars received a significant
boost from DARPA-sponsored competitions in the years
2004 to 2007, namely the “DARPA Grand Challenge” [2]
and the “DARPA Urban Challenge” [3]. Both books [2]
and [3] contain the original papers of all the important
participants of these competitions, with comprehensive de-
scriptions of their experimental systems. Research related
to self-driving cars has continued rapidly since then and
has increasingly spread from academia to the automotive
industry. Some of the advances in methodology following
the DARPA challenges are described in [4], and an overview
of more recent developments in sensor technology for au-
tonomous driving can be found in [5]. A related example
is [6], where the authors describe and evaluate multiple
sensor configurations and a software architecture used for
their autonomous vehicle. The “Formula Student Driver-
less” (FSD) is a recent competition for autonomous racing
cars that also encourages further development, and partici-
pants typically rely on a combination of cameras, INS, and
LiDAR sensors for their very specific use case [7]. With
MODISSA itself, we do not aim at autonomous driving, but
we can configure the sensors accordingly and thus work on
algorithm development for this application. We addition-
ally work on real-time detection of unexpected impacts on
vehicles, for example by UAVs (cf. Subsection 4.C).

(B) Measurement vehicles for surveying and mobile map-
ping differ significantly from experimental systems for au-
tonomous driving, since the quality of the data obtained is
the main priority in this case. Consequently, sensors with
high measurement accuracy and best coverage are used,
together with inertial sensors for precise positioning of all
measurements. The processing is usually performed sep-
arately from the data acquisition. An overview of sensor
platforms for remote sensing can be found in [8]. Vehicle-
based, multi-sensor measurement systems of research in-
stitutions are described in [9] and [10], to name just two
examples. Prominent examples of commercial measure-
ment vehicles are the ones used by data companies like
Alphabet or Here to collect data for their geodata or map
services. A recent version of Google’s Street View vehicles
is equipped with a multi-camera setup to take spherical
images of the surroundings, with two additional cameras
to capture details, and with two Velodyne VLP-16 LiDAR
sensors mounted at a 45° angle to acquire 3D data along the
road [11]. Here’s cars are also equipped with LiDAR sen-
sors and cameras [12], and same as MODISSA, they employ
ROS as part of their software stack.

Regarding (2): Over the years, companies and research
groups provided test datasets recorded with their experimental
systems. This is primarily being done to push competitive re-
search in a particular direction with certain benchmarks, and it
is often related to the work already mentioned in (1). Prominent
examples are the well-known KITTI dataset [13] and extensions
to it, e.g. KITTI-360 [14] or SemanticKITTI [15]. Meanwhile,
there are enough test and benchmark datasets available for
different objectives, such as iQumulus [16] recorded with [10],
DublinCity [17], Paris-Lille-3D [18], nuScenes [19], the Lyft Level
5 dataset [20], the Waymo open dataset [21], ApolloScape [22],
Argoverse [23], or A2D2 [24]. We too provide an MLS bench-
mark dataset for semantic labeling, recorded with MODISSA,

which has been annotated at the Technical University of Mu-
nich [1]. However, as mentioned previously, we believe that
research using pre-recorded data is limited in some cases, and
that a dedicated experimental system is needed for deeper in-
vestigations.

3. MODISSA: REALIZATION OF A MOBILE MULTI-
SENSOR SYSTEM

A. Sensor selection and installation
This subsection presents the sensors that are currently installed
on MODISSA and why they were selected. Since the intended
applications also dictate the most reasonable mounting options,
we describe these along with the selection criteria. This paper,
however, is not meant to be an advertisement for the named sen-
sors. Both MODISSA’s sensor configuration and its computing
resources are being upgraded periodically, so we have generally
avoided fully integrated solutions in favor of individual sensors
we integrate ourselves. This is facilitated by the mechanical
workshop of Fraunhofer IOSB and by know-how in electronics
and integrated circuit development in our department, which
is the Department Object Recognition (OBJ). The current sensor
configuration is shown in Figure 1, and some detailed views can
be seen in Figure 2.

(a) (c)

(b)

Fig. 2. Detailed views of the sensor installation: (a) mounting
options for the front LiDAR sensors; 2 of the 8 panoramic cam-
eras, (b) rear LiDAR sensor mounts, (c) bird’s eye view of the
fields-of-view of all panoramic cameras (vehicle front to the
left).

• LiDAR sensors: LiDAR is an established sensor technology
for active 3D scene measurement. LiDAR sensors are avail-
able in a number of different types: as a range-imaging
camera, flash LiDAR, or as a scanner. The achievable mea-
surement ranges are affected by limitations on laser power
to maintain eye safety at the specific laser wavelength. Cur-
rently, advances in LiDAR sensor technology with regard to
longer ranges and better resolution can be noticed. Ex-
amples are Geiger mode, avalanche photodiode (APD),
single-photon detectors, new detector materials, solid-state
LiDAR, and digital LiDAR. The latter two terms refer to
fewer mechanical and more highly integrated parts, promis-
ing continued cost reduction.

Push-broom line scanners are typically the solution of
choice for mobile mapping purposes, but they cannot pro-
vide a complete horizontal coverage of the vehicle’s vicinity
as required for real-time vehicle safety tasks. For MODISSA,
we therefore opted for 360° 3D scanning LiDAR sensors,
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even though the accuracy and vertical coverage they can
achieve for mapping tasks are typically lower than other-
wise possible. First-generation devices, like those depicted
in Figure 2a which we still use, will soon be replaced by
devices with longer ranges and better resolution. Neverthe-
less, our application-related findings discussed in Section 4
remain valid and can be scaled to newer sensors.

MODISSA’s front LiDAR sensors can be mounted on wedge-
shaped bases in four azimuthal orientations. The inward
tilted orientation shown on the left of Figure 2a has been
used for detection of UAVs, and the outward tilt is suited
for pedestrian detection and urban surveying, see Section 4.
The angle of the wegde is designed to compensate the down-
ward angle of the lowest beam from the LiDAR sensor when
it is looking towards the thick end of the wedge. The rear
LiDAR sensors can also be mounted on a wedge base. A
recent experimental change puts their rotation axis in the
horizontal as shown in Figure 2b.

• Panoramic camera setup: An omnidirectional field-of-view
around the vehicle is realized by eight identical video cam-
eras attached in pairs to each corner of the vehicle roof.
This setup was chosen after experiencing the drawbacks of
an integrated spherical camera head, whose field-of-view
was severely restricted by the vehicle roof and the other
sensors. With the current setup, a parallax between indi-
vidual cameras has to be tolerated, but full 360° coverage
is achieved at less than 1.0 m distance from the vehicle on
all sides. Figure 2c shows the overlapping fields-of-view.
The cameras are 2 MPixel color cameras that output Bayer
pattern data. That resolution is considered sufficient for our
applications, and both the resolution and recording Bayer
data keeps the amount of data low. The cameras are wa-
terproof, and the lenses are covered by a waterproof tube
attached to the cameras. This reduces the choice of cameras
but makes it unnecessary to build cases for them. Further
important requirements were a global shutter and external
frame trigger capability, which allows synchronization with
other sensors.

• Inertial navigation system (INS): The INS is quite inconspic-
uous at first glance, but it has the greatest impact on con-
sistent mobile data acquisition. In the commercial INS we
use, a position computer (PCS) provides a position and ori-
entation estimate based on input from a high-grade inertial
measurement unit (IMU), a dual GNSS receiver, and a dis-
tance measurement indicator (DMI) attached to one of the
rear wheels. The IMU is mounted on the same base plate
on the vehicle roof as one of the front LiDAR sensors in
order to minimize deviations between their movement. The
INS allows GNSS-related errors to be reduced by including
correction data obtained from a base station (real-time kine-
matic positioning, RTK). Next to inertial navigation, the
PCS also provides a reference clock that is used for sensor
synchronization, see Section 3.D.

• Sensors on the pan-tilt head: A characteristic feature of
MODISSA is the combination of its omnidirectional sen-
sors with directional sensors on a pan-tilt head (PTH). The
cameras on MODISSA’s pan-tilt head are intended for ded-
icated purposes, namely 1. to resolve details of directly
targeted objects, which is why optics corresponding to a nar-
rower field-of-view were chosen, and 2. to capture objects

in a multi-spectral manner, which is why a thermal resp.
longwave infrared camera (LWIR) was placed alongside
a visual camera (VIS). For the LWIR camera, an uncooled
microbolometer camera was chosen, as this technology is
lighter, less power-hungry and faster to power up than a
photon detector IR camera. On the downside, microbolome-
ter IR cameras always have a rolling shutter. The video
camera has a snapshot shutter, and both cameras accept
external frame triggers. Besides the two cameras, the PTH
carries a laser distance meter, which allows to obtain the 3D
location of an object sighted through the cameras.

• Pan-tilt head: In order not to limit our choice of cameras,
we have opted for a general-purpose PTH instead of an
integrated pan-tilt camera. Though the market for PTHs
sold separately is small, we were able to obtain a type that
combines a large payload (23 kg) with moderate weight
(17 kg). It allows changing control parameters in the field,
which is necessary for adaption to the payload. Its pan
axis contains a slip ring with an allowance of user signals
that we use to connect the cameras. This allows the PTH to
rotate freely without any need to track the pan angle and
unwrap external cables. For reliable operation of a camera
with a Gigabit Ethernet (GigE) interface, we have replaced
the slip ring with a variant designed for GigE and upgraded
the user signal cabling. The PTH comes with an internal
IMU for stabilized operation. Our control software uses a
combination of prediction of the vehicle pose and the PTH
stabilized mode to keep the sensors level.

The electrical power for the entire multi-sensor system and
the computers is provided by large lithium-ion batteries and
a power inverter. Up to 2000 W at 230 V AC can be provided
continuously for more than five hours before they need to be
recharged.

Criteria for the orientation of the specific sensors have already
been included in the previous list. For instance, the LiDAR sen-
sors can be oriented to achieve best coverage along the road, in
front of the vehicle, or towards the sky (see Figure 2), depending
on the application being investigated. The placement of the
sensors on the vehicle is even more dependent on the mounting
capabilities of the experimental platform. For example, in an
experimental system, the sensors are more likely to be placed as
a payload on a platform on the roof racks, e.g., to avoid losing
the vehicle’s road approval. The roof height above the road
also has advantages in terms of the overview of the surround-
ing traffic. On the other hand, it is to be expected that other
criteria will play a role towards series production, such as the
drag coefficient of the vehicle and its aesthetic appearance. In
a multi-sensor system, aspects of avoiding mutual occlusion or
even mutual interference between the sensors also need to be
taken into account. On MODISSA, shielding plates were placed
between the LiDAR sensors specifically for this reason (see Fig-
ure 2a). Nevertheless, LiDAR crosstalk can still be observed [25],
but manufacturer’s solutions for this problem are now being
implemented for next-generation LiDAR sensors.

B. Intrinsic calibration of the optical sensors
A necessary preparatory step is the intrinsic calibration of all op-
tical sensors. In the case of cameras, the intrinsic parameters
describe the optical center, the focal length, and the distortion
of the lens that forms the image on the detector array. Standard-
ized procedures and methods can be used to determine these
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before extrinsic calibration:
• gaps between subscans
• blurred aggregated point cloud

after extrinsic calibration :
• matching subscans
• sharp representation of the scene

LiDAR
INS

pN(t)

pN(t) + RN(t)○dLiDAR

pL(t) = pN(t) + RN(t)○[RLiDAR○ rL(t) + dLiDAR] pL(t) = pN(t)+RN(t)○[RLiDAR○RC ○rL(t) + dLiDAR]

Fig. 3. Mobile LiDAR data acquisition with a newly assembled system typically results in a blurred aggregated point cloud. Only
after extrinsic calibration, a sharp 3D representation of the scene can be acquired.

parameters, such as can be found in the “OpenCV” program
library (e.g., by using a “checkerboard pattern”). In case of Li-
DAR sensors, intrinsic parameters may also include nonlinear
corrections to the measured distances, the exact alignment of the
individual laser rangefinders in a scanner head, or parameters
describing the scanning process. Although the intrinsic parame-
ters are usually determined and provided by the manufacturer,
a custom intrinsic calibration procedure specific to the type of
LiDAR sensor can further improve the data quality. Our group
has also addressed this topic in the past [26], but since it is a
topic of its own and independent of MODISSA as a mobile data
acquisition system, we do not go into further detail here.

C. Extrinsic calibration and direct georeferencing

As already pointed out, a typical sensor-equipped car or mobile
mapping system consists of several spatially separated parts.
These are the optical sensors plus those of the INS, which typi-
cally comprises one or more GNSS receivers, wheel odometry
(distance measurement indicator, DMI), and the inertial mea-
surement unit (IMU) as its core element. Each optical sensor
defines its own 3D coordinate frame, e.g. with the optical axis or
the scan axis being one of the coordinate axes. The INS provides
a navigation solution for its own well-defined coordinate frame,
and measures its position and orientation in relation to the world
coordinate system (e.g., ECEF). The vehicle’s coordinate frame
can be defined with a fixed transformation to that of the INS.
Seen in this way, the vehicle is attached to the INS, not vice versa.
The exact knowledge of the mutual placement and alignment
of the INS’s and each sensor’s respective coordinate frame is of
great importance for precise and consistent mobile data acquisi-
tion and interpretation, see Figure 3. Using common terms, this
refers to each sensor’s lever arm and boresight orientation.

The procedure for geometric resp. extrinsic system calibra-
tion outlined in this subsection concerns mobile data acquisition
by LiDAR sensors (MLS). Similar methods are also being used
for the cameras. We describe a condensed version of a cali-
bration method that we previously published in [27]. In this
overview paper on MODISSA, we focus on the essential bore-
sight alignment, while omitting the more problematic but also
rather unnecessary data-driven correction of the lever arm.

Let dLiDAR denote the lever arm of the LiDAR sensor in ques-
tion, and let RLiDAR be the estimate of its boresight orientation,
such that R−1

LiDAR describes the alignment of the LiDAR sensor’s
coordinate frame relative to that of the INS. An initial estimate
for RLiDAR usually exists by knowing the construction layout
of the sensor carrier. As soon as position and orientation of
one LiDAR sensor relative to the coordinate frame of the INS
are determined, additional LiDAR sensors can be added to the

transformation chain in terms of a LiDAR-to-LiDAR registration,
e.g., by scanning reference surfaces and registering overlapping
parts of the data. However, for at least one LiDAR sensor, a
LiDAR-to-INS extrinsic calibration must be performed by mo-
bile acquisition of LiDAR data involving the INS. The associated
method described in this subsection is also applicable for in-field
calibration, as it does not require a dedicated calibration setup.

Typically, opto-mechanical scanning provides a specific scan
pattern, in which the distance ρL(t) measured by the LiDAR
sensor at time t is directed according to the scanning geometry.
Let rL(t) denote the 3D point measured by the LiDAR sensor in
its own coordinate frame such that ‖rL(t)‖ = ρL(t). Together
with the navigational information pN(t) and RN(t) describing
current position and orientation in the world as measured by the
INS, the LiDAR range measurements are directly georeferenced
in the following way:

pL(t) = pN(t) + RN(t) ◦ [RLiDAR ◦ rL(t) + dLiDAR] (1)

The aggregated points pL(t) acquired within a time interval
[t1, t2] are usually called a LiDAR point cloud or, more specifically,
an MLS point cloud in the case of mobile LiDAR scanning. Al-
though the data acquisition is continuous, for convenience and
by convention we usually split the data stream of georeferenced
3D points to a sequence of scans of 1/10 second duration, which
in our system corresponds to single 360° 3D scans of the scanner
head rotating at 10 Hz.

The accuracy of 3D point clouds obtained by direct georef-
erencing of LiDAR measurements is affected by several factors,
reflecting the complexity of the sensor system. In addition to
varying exactness of the navigational information sources (GNSS
errors, IMU drift), several systematic effects can lead to reduced
accuracy of point positioning. The lever arm of a LiDAR sen-
sor can usually be determined with sufficient accuracy once the
entire system is assembled, e.g., by simple measurement with
a measuring tape. A boresight error has a much greater impact
on the point positioning accuracy and typically occurs in magni-
tudes of some tenths of a degree on a newly assembled system.
For example, a misalignment of 0.6° results in a displacement
of 1.0 m for points at a distance of 100 meters. This subsection
addresses the automatic correction of such boresight errors, as-
suming that all other influences were reduced to a minimum.
In this sense, extrinsic calibration of the mobile LiDAR system
means the automatic determination of a boresight correction RC
to Eq. 1 in the following way:

pL(t) = pN(t) + RN(t) ◦ [RLiDAR ◦ RC ◦ rL(t) + dLiDAR] (2)

To calibrate the system and find RC automatically, we assess
and optimize the quality of the MLS point cloud Pt1,t2 acquired
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in a certain time interval [t1, t2]. For a point pi, let {pi}N be the
set of pi and its N nearest neighbors. The smallest eigenvalue λi1
found by principal component analysis (PCA) of this neighbor-
hood quantifies the local scatter of 3D points at this position. We
intend to minimize the average local scatter S of the 3D points
such that the resulting point cloud is a sharp 3D representation
of the scene (cf. Figure 3). Hence, with the total number np of
points in the point cloud Pt1,t2 , we require

S =
1

np · (N + 1)

np

∑
i=1

λi1 → min (3)

A simple but easy to implement numerical way to find the min-
imum of S is to perform a full or iterative grid search in the
parameter space whose three dimensions are the Euler angles of
RC.

(a) (b) (c)

Fig. 4. (a) View of an appropriate scenario used for the calibra-
tion. (b) LiDAR points in the yellow section acquired with the
uncalibrated system. (c) The same points after extrinsic calibra-
tion.

In analogy to the previously shown illustration, Figure 4
gives an impression of the calibration procedure at a real-world
scenario. Figure 4a shows the path driven to acquire the data
used for the calibration (red), and an exemplary section of a
building (yellow). Figures 4b and 4c show the LiDAR points in
this section before and after the calibration procedure.

Results and lessons learned: We conducted several experiments
to evaluate the suitability of different terrains as well as influ-
ences of the driving maneuver and other boundary conditions
on the calibration process. Some results of these experiments
are described in our previous paper [27], and we have since
been able to confirm and extend these findings. The following
results can be noted: For an extrinsic calibration in the proposed
manner, the LiDAR-to-INS extrinsic calibration works best when
only short time intervals [t1, t2] are considered, during which a
stable GNSS-based positioning can be expected. In our calibra-
tion runs, these time intervals are therefore typically no longer
than 20 seconds. Within the time interval, curvy driving ma-
neuvers (e.g. zigzag, see Figure 4a) should be performed in a
terrain with enough surfaces with varying orientations. Among
the terrain types typically available, urban areas are the most
suitable. Here, we succeeded in determining the orientation
angles of MODISSA’s LiDAR sensors with an estimated residual
error less than 0.1°, which corresponds to a point deviation of
17 cm at a distance of 100 m.

D. Synchronized sensor data acquisition and recording for
mobile surveying

When using MODISSA as an experimental mobile sensor plat-
form for a particular application, we distinguish between its data
recording system and its real-time processing system, in the same
sense as the distinction (B) vs. (A) was made in Section 2. This
distinction is not actually visible from the outside, because both
systems share the same infrastructure of the installed sensors
and their synchronization, and both systems can even run in
parallel. In this subsection, we describe the implementation of
synchronized sensor data acquisition and recording, which is
based on the experiences gained with our previous airborne
data acquisition platform [28]. The real-time processing system
is described separately in Subsection 3.E.

INS 
PCS

× 4

LiDAR
sensors

Pan-tilt head

Panoramic 
cameras × 8

FPGA
PC: Control and recording of 

LiDAR, INS

PC: Camera recording × 2

PC: Panoramic camera recording
Onboard processing

Serial

NMEA PPS

Trigger

Trigger

Event USB

Serial

Sensor dataSynchronization Control

IMU

DMI

GNSS

FPGA

USB

Fig. 5. Sensor synchronization, sensor control paths, and sen-
sor data transmission in the data recording system.

Figure 5 gives an overview of the several data and control
links in the recording system. The data stream of each sensor is
recorded by one of a total of four computers. These computers
are connected to each other in a network so that their sensor data
can also be shared, e.g., in the context of real-time processing
(see Subsection 3.E). One of the computers is responsible for
the sensors with low data volume, i.e., the INS and the LiDAR
sensors. It is also used for several control tasks, including con-
trol of the pan-tilt head, thus it also records the pan-tilt head’s
orientation data. Both the visual and thermal camera installed
on the pan-tilt head are operated with a dedicated recording
computer. The outputs of the eight cameras of the panoramic
camera setup are recorded by the fourth computer, which is also
the one to be used for the real-time processing.

An IOSB proprietary data format is used to stream and record
all image sequences (SIS, the “IOSB Image-Sequence File for-
mat” [29]. It is uncompressed to facilitate random access when
working with recorded data. It supports supplemental metadata
for each frame as well as for the entire recording.

When recording multiple data streams, time tagging of all
data is required to enable time-synchronous data fusion in subse-
quent post-processing operations. The position computer (PCS)
of the INS also contains the reference clock for the sensor sys-
tem. It can transmit the position and time via several serial
interfaces in the format of “National Marine Electronics As-
sociation” (NMEA) messages together with a synchronization
pulse indicating the start of each second (PPS). This is the syn-
chronization method used for the LiDAR sensors, which are



Research Article Applied Optics 7

designed to accept such messages. As shown in Figure 5, in
our case a translation device is interposed between the PCS and
the LiDAR sensors. It contains a small circuit implemented at
Fraunhofer IOSB in a field-programmable gate array (FPGA)
that serves multiple purposes. The Velodyne HDL-64E requires
a specific NMEA message and the PPS on the same signal input
within a narrow time window relative to each other. The PCS
has not always supported the required NMEA message type,
transmits the PPS on a separate line and does not observe the
required timing. The translation box delays the NMEA message
as needed and retransmits it to all four LiDAR sensors. In ad-
dition, it allows to send commands it receives from the control
computer to one of the Velodyne HDL-64E sensors. This has
been used for experiments in synchronizing the rotation of the
Velodyne HDL-64E sensors by continually adapting the rotation
speed of one of them to avoid LiDAR crosstalk.

As a second synchronization method, the PCS provides so-
called event inputs that can receive signal pulses. For every
pulse detected, the PCS generates a timestamp and inserts it
into the navigation data stream. This is used for the cameras.
All cameras run in external frame trigger mode, which means
that each individual image they capture is triggered by a signal
coming from outside the cameras. The trigger generator is again
a custom circuit implemented in an FPGA. All trigger signals
are duplicated and transmitted to both the cameras and an event
input of the PCS. Separate signals are used for the LWIR camera
and the visual camera on the pan-tilt head, as well as for the
group of eight panoramic cameras. Therefore, each of these
cameras (or group of cameras) can be operated at an individual
frame rate.

There may be a small delay between the trigger pulse and the
start of the exposure of a video camera. We have a way to mea-
sure it [30] and have found it to be of the order of microseconds.
Knowledge of this delay and the exposure time allows to shift
the timestamps to the middle of the exposure interval in offline
processing. Alternatively, a feature in our custom trigger genera-
tor allows to shift the trigger times by a set amount and thereby
compensate a constant offset. Microbolometer IR cameras such
as the one on the PTH have a much more complex timing be-
havior. Due to their operating principle, there is no exposure
interval and the pixel value is determined by the observation of
the scene preceding the trigger time. We also have a method (as
yet unpublished) to measure their time constant, which is of the
order of milliseconds.

The recording computers receive a copy of part of the naviga-
tion data stream from the control computer. The timestamp and
an interpolated position and orientation are embedded into the
frame headers of the image data streams. Triggering is started
with a slight delay after starting data acquisition so that record-
ing cannot miss the first frame. After that, frames and times-
tamps are matched by their sequence numbers. Due to the use
of non-real-time operating systems, it can happen that the two
data streams temporarily drift apart so much that the camera
stream would have to be delayed more than desired. In that
case, the embedding skips some frames and continues when
the navigation data stream has caught up. The current angles
of the PTH are embedded in the same way, though there is no
hardware support for properly synchronizing those values.

E. Real-time data processing and sensor control
The research tasks of type (A) specified in Section 2 require a
capability for immediate data processing. To this end, the real-
time processing system was established on MODISSA, which is

described in more detail in this subsection. In terms of the com-
puters and software used, it is still designed to facilitate research
activities. This implies that the focus in setting up the real-time
processing system is on configurability and ease of operation,
rather than on a final, technologically optimized system design.
Constraints of compactness and energy efficiency were therefore
not a primary concern. For the computer hardware, this means
that a standard PC environment is used for the onboard process-
ing, which has a high compatibility with existing C++ algorithm
implementations from related research projects.

The software environment for real-time processing on
MODISSA is based on the “Robot Operating System” (ROS,
www.ros.org, [31]). Although ROS is originally intended for its
use in robotics, it is also useful for multi-sensor systems in gen-
eral. The software environment facilitates the communication
between multiple software processes and provides an abstrac-
tion layer between the sensors, other hardware components, and
the data processing. The abstraction layer allows changes to
the sensor equipment without requiring extensive changes to
the implementation of methods for data analysis. It provides
access to sensor data in standardized formats, access to cali-
bration information of respective sensors, the kinematic chain,
standard processing of sensor data, and easy-to-use interfaces
for controlling actuators, such as the pan-tilt head.

Fig. 6. Schematic overview of the ROS-based system for real-
time processing. Exemplary building blocks illustrate its mod-
ular applicability.

Figure 6 shows a schematic overview of MODISSA’s real-
time processing system. The different program modules com-
municate with each other through the mechanisms of ROS. The
system can be divided into three layers: The first layer commu-
nicates with the hardware, either directly or, in the case of the
cameras and the pan-tilt head, through programs of the record-
ing system (see Subsection 3.D). This layer is the only one that
interacts with components outside the ROS-based environment.
The second layer provides some standard pre-processing steps
for the sensor data. For example, RGB images are generated

https://www.ros.org
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from the raw Bayer pattern data of the panoramic cameras. In
the case of the LiDAR sensors, this layer includes the real-time
generation and direct georeferencing of 3D point clouds. The
INS measurements are used to provide and update transforma-
tions between coordinate frames of the individual sensors and
the global geocoordinate system. The third layer contains the
software modules of the actual high-level processing, which are
related to the specific research tasks and are developed individ-
ually for this purpose (see Section 4).

F. Data protection
Data collection in road traffic within populated areas generates
some sensitive data, e.g., image recordings of license plates and
persons with time and location references. A factor that is often
initially underestimated in this context is compliance with the
data protection regulations of the respective country. In the Eu-
ropean Union (EU), the processing of personal data is prohibited
unless at least one of six different reasons legitimizes it, one of
which being the “legitimate interest” of the processor (Art. 6
of the EU’s General Data Protection Regulation, GDPR). In this
case, the data processor must ensure that this interest is not over-
ridden by the interests or fundamental rights and freedoms of
the data subject. Therefore, a high level of data protection and
data security is mandatory. In preparation of the initial activi-
ties with MODISSA, we obtained a lawyer’s expertise and then
defined a data protection concept according to which we now
plan, conduct, and post-process our measurement runs. Never-
theless, this section cannot and should not be understood as a
legal advice, we only give a brief insight into this data protection
concept. It is based on three core principles:

• Avoidance: The acquisition and storage of sensitive data is
avoided whenever possible. The reasons to record data are
clearly justified and documented in advance in a measure-
ment plan.

• Security: The duration of data storage is minimized and
access to these data is secured at all times by technical mea-
sures. Access to the mobile sensor platform and the data is
limited to a necessary number of persons. Each measure-
ment run on public ground is documented in a logbook.

• Privacy preserving: For the subsequent scientific use that
is described in the measurement plan, the collected data
are promptly subjected to an automated anonymization
process.

red zone yellow zone green zone

www

Fig. 7. Different zones for the recorded data: red, yellow, and
green zone, each with a different balance between access re-
striction and anonymization.

With this in mind, we have defined three different environ-
ments where the data are processed, see Figure 7. In each envi-
ronment, appropriate measures enforce the three core principles:

• In the red zone we handle temporarily stored raw data. It
has the highest level of access restrictions, physically and by
encryption. The only allowed access to it is to anonymize
the data to transfer them into the yellow zone.

• The yellow zone contains algorithmically anonymized data
for research purposes with limited access by people who
need the data for their research.

• In the green zone we put selected and manually inspected
anonymized data for print and online publications.

The main element of our data protection concept is the au-
tomatic anonymization of personal data, which transfers the
sensor data from the red zone to the yellow zone. It has been im-
plemented in our department at Fraunhofer IOSB using modern
machine learning methods, see [32]. The technical details can
be summarized as follows: we use “OpenPose” to estimate key-
points of persons, locate their facial regions and then blur them
(Figures 8a and b). Furthermore, we use a two-step “YOLOv3”
approach to detect and locate vehicles, and then to find and blur
their license plates (Figures 8c and d).

(a) (c) (d )(b)

Fig. 8. (a) Person with facial region detected by OpenPose,
(b) anonymization result. (c) Cars detected by YOLOv3, (d)
license plates located and blurred. Results from [32].

Results and lessons learned: A comprehensive performance
evaluation of our anonymization methods can be found in [32].
The values for precision and recall obtained in these evaluations
indicate recognition performance on an almost human level,
such that the final manual inspection to transfer sensor data to
the green zone is reduced to a minimum.

Since the sensor data are recorded to be used as the basis
for subsequent scientific studies, partially blurred image data
may no longer be usable depending on the specific research
topic, e.g., for the detection of distracted pedestrians or facial
emotions. The only option in such cases is to stage scenes on
private ground.

Beyond compliance with the legal requirements, it may be
good practice to inform the local authorities about the measure-
ment campaigns in case they receive any inquiries or complaints.
For the same reason, it can be helpful to carry information ma-
terial about the measurement vehicle and the objective of the
measurements, which can be passed on to interested citizens
upon request.

4. SELECTED APPLICATIONS, METHODS, AND RE-
SULTS

Depending on the particular research context, dedicated mea-
suring vehicles or sensor-equipped cars are often specifically
designed to achieve the research goals for the application at
hand. With MODISSA, we aim at a multi-purpose applicability
with simultaneous adaptability, so that we can address both real-
time applications and data recording for later offline processing.
In this section, we give examples of both use cases. More specifi-
cally, these selected applications are: (A) mobile 3D mapping, (B)
LiDAR-based person detection, and (C) multi-sensor UAV detec-
tion and tracking. These examples are part of current research
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projects at Fraunhofer IOSB and were selected from a number of
others, in which the MODISSA vehicle plays an essential role.

A. Area-wide mobile 3D mapping

The term mobile mapping describes the process of acquiring and
recording geospatial data using a dedicated mobile sensor plat-
form. This can be a vehicle equipped with remote sensing de-
vices such as cameras and/or LiDAR sensors as well as with
hardware for direct georeferencing (i.e., an INS and its compo-
nents). The data product generated this way is typically obtained
through massive post-processing of the sensor data and consists
of, for example, content for a geographic information system
(GIS), 2D digital maps, or 3D city models.

Obviously, MODISSA with its data recording system de-
scribed in Subsection 3.D and the direct georeferencing tech-
nique explained in Subsection 3.C can be referred to and used
as a mobile mapping system. In this context, we work on the
following research topics:

• Generation of 3D terrain models which can be used, for
example, for LiDAR-based self-localization [33].

• Terrain navigability analysis [34].

• 3D change detection in urban areas [35].

• Semantic interpretation of large-scale 3D point clouds of
urban areas [1].

A.1. The TUM-MLS-2016 benchmark dataset

With regard to the last bullet point, this subsection provides
some details of the data collection and data preparation that led
to the “TUM-MLS-2016” benchmark dataset [1]. The relevant
MLS data have been acquired in April 2016 using MODISSA.
At the time of data collection in 2016, both Velodyne HDL-64E
LiDAR scanners were positioned on wedges at a 25° angle to
the horizontal, rotated outwards at a 45° angle. The orientation
of the scanners can be seen in Figure 2a, top right, and the
resulting scan pattern is shown in Figure 9a. Furthermore, each
LiDAR scanner was configured to rotate at a frequency of 10 Hz
and acquired approximately 130,000 range measurements (3D
points) per rotation with distances up to 120 m. The LiDAR
data were recorded synchronously with position and orientation
data of the Applanix POS LV 520 INS, which were enhanced by
GNSS correction data of the local GNSS reference station from
the German SAPOS network. Thus, it was possible to perform
quite accurate direct georeferencing of the LiDAR data and to
aggregate all resulting 3D points in a common geocoordinate
frame (ECEF).

(a) (b)

LiDAR 2

LiDAR 1

■Man‐made terrain
■ Natural terrain
■ Vehicles
■ Buildings
■ Hardscape
■ Artificial objects
■ Low vegetation
■ High vegetation
■ Unclassified

Fig. 9. Detailed views of the TUM-MLS-2016 data: (a) Data
acquisition with two obliquely rotating LiDAR scanners, (b)
different annotated object classes of the final point cloud.

The data acquisition took place in the area of the city cam-
pus of the Technical University of Munich (TUM). Within half
an hour, MLS data in more than 17 thousand 360° 3D scans
were acquired by each of the two LiDAR scanners as we drove
MODISSA along the streets around the TUM city campus and its
inner yard (cf. Figure 9a). The final point cloud consists of 1.7 bil-
lion 3D points in total, and covers an urban scenario of 70,000 m2

consisting of building facades, trees, bushes, parked vehicles,
roads, meadows and so on. Each point has x, y, and z coor-
dinates and carries the intensity i of the laser reflectance. The
handling of such amounts of 3D data can’t be done straight-
forward, it requires an adequate and efficient data structure.
Existing alternatives can be considered for the visualization, e.g.,
the open-source renderer “Potree” [36] which uses a hierarchical
data structure in order to visualize the point cloud in real-time
in a web browser (example: s.fhg.de/vmls1).

In the time-consuming manual annotation process, a subset
(30%) of the georeferenced points in the scene was manually
labeled on a 20 cm voxel grid with eight semantic classes fol-
lowing the ETH standard [37] and one unclassified class. An
example showing the different classes can be seen in Figure 9b.
In addition to the object classes, individual instances have also
been annotated.

These MLS data with annotated ground truth are well suited
for the development of methods for semantic scene interpreta-
tion, city modeling, but also for the investigation of real-time
applications like object detection or LiDAR-SLAM. The complete
dataset is made available to the scientific community under a
Creative Commons License (s.fhg.de/mls1). In combination
with the follow-up dataset “TUM-MLS-2018”, which is also
available, methods for automatic 3D change detection can be
developed and tested.

A.2. Lessons learned (MODISSA and mobile mapping)

On MODISSA, 360° 3D scanning LiDAR sensors are used which
were not originally conceived for the purpose of mobile map-
ping. The measuring directions of the 64 individual laser
rangefinders in the scanner head of a Velodyne HDL-64E are
primarily oriented downward (2.0° up to 24.8° down). For use
in the mobile mapping sector, e.g. for the mapping of facades,
an unconventional tilted orientation of the sensors is therefore
required, but this has proven to be quite successful in our mea-
surement runs. The 360° 3D LiDAR scanners have the charac-
teristic that they scan the vehicle environment overlapping at a
rate of 10 Hz, which causes moving objects to leave a point trail
in the accumulated 3D point cloud. Motion artifacts inevitably
occur in mobile mapping of populated environments, but are
particularly noticeable with this type of scanner. To remove arti-
facts caused by moving objects from the point clouds, filtering
methods must be applied [38].

A successful feature is the consistent and accurate embedding
of metadata in all data streams (time and location), which greatly
simplifies offline sensor data fusion. However, the accumulation
of data sequences also reveals offsets between multiple captures
of the same location, which can be attributed to the inaccuracy of
GNSS-based positioning. Even post-processing using correction
data of a GNSS reference station cannot completely eliminate
these errors, so loop closures and a bundle adjustment may still
be necessary.

Attention must also be paid to handling the huge amounts
of data that are created. Even just storing the data requires a
careful selection of hardware (data links, data storage) that is
suitable for the data rates that occur. By far the largest portion

https://s.fhg.de/vmls1
https://s.fhg.de/mls1
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of MODISSA’s data volume is caused by the video cameras
(90%), not by the LiDAR sensors. In a typical setting and using
all sensors, currently about 4 TB of sensor data are generated
within one hour.

B. Localization and observation of pedestrians in road traffic
Pedestrians are the most vulnerable road users, especially in
an urban environment where pedestrians and vehicles have to
share the traffic space. We use MODISSA for experiments in the
field of automatic detection and observation of pedestrians in
road traffic, with the aim of developing driver assistance sys-
tems or autonomous driving functions to ensure unconditional
avoidance of accidents involving pedestrians. In this respect,
we believe that an active and passive multi-sensor approach
offers the greatest reliability, given the differing advantages and
disadvantages of applicable sensor technologies.

360° 3D scanning LiDAR is very efficient in capturing the 3D
scene geometry, but its spatial resolution is usually too low to
obtain fine details, such as the viewing direction of a detected
person. In addition, LiDAR cannot capture color information of
the scene. Both could greatly enhance the capabilities for auto-
matic situational awareness, e.g., to assess the level of attention
of nearby pedestrians. In our approach, we use the vehicle’s
LiDAR sensors for pedestrian detection and 3D tracking [39, 40].
The determined positions of pedestrians are then used to se-
lect areas of interest in the images provided by the vehicle’s
panoramic cameras, which can then be further analyzed or high-
lighted to the driver.

B.1. LiDAR-based detection of pedestrians

MODISSA provides us with consistent georeferenced MLS point
clouds from multiple LiDAR sensors, taking the motion of the
sensor platform into account, cf. Subsection 3.C. We have devel-
oped a method for LiDAR-based real-time detection of pedestri-
ans, that takes these single point clouds as the main input, e.g.,
the 360° 3D scans of a rotating LiDAR scanner. The method is
summarized in an overview in Figure 10.

Input:  Point cloud 
and sensor pose (ENU)

Optional:  Crop 
area of attention

Find and prepare local
point neighborhoods

Neural network  
Processing is performed separately for each local point neighborhood

Determine 
neighborhood features

Classifiy neighborhood Estimate position
of object center

Use outputs of network
to fill voting space

Determine maxima
in voting space

Output: Objects and
their 3D positions

If classified as part
of object of interest

Vote for object center
Local point neighborhood

Detection

Current 3D point cloud of
the scene (scanning LiDAR)

Fig. 10. Procedural overview: LiDAR-based detection of rele-
vant objects in the vehicle’s vicinity.

In short, we combine two different machine learning methods
to achieve object detection, classification and localization within
3D point clouds:

• Analysis of local point neighborhoods within the point cloud.
This is intended to detect parts of relevant objects, e.g.,
body parts of persons. We accomplish this task via a neural
network that is inspired by “PointNet” [41].

• Detection of relevant objects with a 3D voting process. Here,
each previously found object part casts votes for possi-
ble center positions of the parent object. The objects are

revealed as the emerging clusters (maxima) in the vot-
ing space. This step is inspired by the “Implicit Shape
Model” [42].

In preparation of the processing step corresponding to the first
bullet point, the input point cloud is first cropped to an area
of attention: the approximate location of the ground surface
relative to the sensor is known, allowing only points above it and
up to a height of two meters to be considered relevant. Local point
neighborhoods are then analyzed, where each such neighborhood
is generated by a center point and its surrounding points within
a certain radius, which is chosen to be approximately 7 times the
average point-to-point distance in the scene. The neural network
that processes these local point neighborhoods is inspired by
“PointNet” and can cope with unstructured 3D points, hence no
grid discretization is required. The neural network is composed
of three parts, see Figure 10 and [39]:

1. Extraction of descriptive neighborhood features.

2. Classification of the neighborhood as part of an object of a
certain type.

3. Regression to estimate the center of the parent object, if
relevant.

Component 1 of the neural network is a multi-layer perceptron
with four layers followed by a max-pooling layer. It is trained to
discover features of local point neighborhoods that are charac-
teristic for parts of certain object classes, e.g., human body parts.
The training itself needs manually annotated point clouds, how-
ever, only a comparatively low amount of these labeled training
data is required as they split combinatorically into many labeled
local point neighborhoods. Component 2 and Component 3
both constitute subsequent multi-layer perceptrons to classify
the parent object based on the local feature vector with a certain
degree of confidence, and to estimate this object’s center position
in a 3D voting space. In a multi-sensor system, the voting space
can even accumulate the votes originating from multiple LiDAR
sensors.

Finally, each cluster (maximum) that is found in the voting
space represents an object and yields the respective result: ob-
ject class, object position, and 3D bounding box containing all
detected parts of the object. Note that although pedestrians are
the most relevant object class for this subsection, we consider
other object classes as well (bicyclists, vehicles, etc.).

Fig. 11. MODISSA’s on-board display shows real-time results
of pedestrian detection and observation in the vicinity of the
vehicle.
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B.2. Observation of pedestrians and handoff to other sensors

LiDAR-based detection is complemented by a method for track-
ing pedestrians based on a Kalman filter. By keeping track of
detected pedestrians, it is possible to observe and automatically
analyze their behavior, e.g., to avoid accidents. Furthermore, this
approach allows to keep track of temporarily occluded pedestri-
ans and simplifies re-detection of the same pedestrians in a scan
sequence [40].

MODISSA’s real-time processing system (see Subsection 3.E)
handles time-synchronous sensor data, and ROS maintains the
complete transformation chain between fields-of-view of all sen-
sors (extrinsic and intrinsic). This allows to project information
regarding detected pedestrians from the LiDAR scans into corre-
sponding fields-of-view, e.g., of the panoramic cameras. Since
this can be done in real-time, simultaneous analysis of the pedes-
trians in the LiDAR and visual sensor data is made possible. We
currently still work on this research topic, but we can provide a
first insight: Figure 11 shows a typical output of the real-time
processing in ROS, displayed on MODISSA’s on-board monitor.
The left side contains a 3D viewer with the results of LiDAR-
based person detection. Image sections following the 3D track of
a detected and selected pedestrian are shown on the right with
additional metadata.

B.3. Lessons learned (MODISSA and pedestrian detection)

Overall, our approach for LiDAR-based pedestrian detection
performs reasonably well, as long as the local point density is
not too low. Regarding the Velodyne HDL-64E LiDAR sensors
we currently still use with MODISSA, this is the case up to
distances of 22 m. A detailed quantitative evaluation can be
found in [39, 40]. While detection of obstacles and movements
is still possible even at longer distances, classifying the specific
object type becomes increasingly difficult. The Velodyne VLP-16
offers an even lower resolution, so that it is actually ruled out
for long-range classification tasks.

Remarkably, we notice a decrease in classification perfor-
mance when the orientation of the LiDAR sensors is changed
(see Figure 2a) in comparison to that of the training data record-
ings. A possible reason could be the change in direction-
dependent angular resolutions, for which the neural network
does not generalize well. For the Velodyne HDL-64E rotating
at 10 Hz, the horizontal resolution is 0.18°, whereas its vertical
resolution is 0.4°. We will soon replace MODISSA’s front LiDAR
sensors with two Ouster OS2-128 which can have a more ho-
mogeneous resolution in both directions, so we will be able to
analyze this effect further.

Mechanically operating LiDAR scanners unavoidably lead
to distortion effects on moving objects in the scene, and combin-
ing LiDAR data from multiple scanners consequently leads to
mismatches. The same effect is found in image data acquired
with rolling shutter cameras. In this analogy, a “global shutter”
would be preferable, i.e., all 3D points of a single point cloud unit
should be acquired at exactly the same time. Flash LiDAR is one
technology that can do this, but it is currently not quite adequate
for capturing the 360° surroundings. However, mechanical Li-
DAR scanners may be superseded by another technology with
this capability in the near future.

Our experiments with MODISSA in the context of this appli-
cation are substantially supported by the ROS software environ-
ment. It turned out to be best practice to include all implemented
algorithms in a software library. This way, the library can be
linked against a ROS program on MODISSA for online process-
ing, but it can also be linked against a user interface for offline

processing of recorded data. This avoids duplicate work and
also simplifies debugging.

C. Protection of vehicles against UAV attacks

Due to the availability and ease of use of small drones (UAVs,
unmanned flying vehicles), the number of reported dangerous
incidents caused by them, both with malicious intent and acci-
dentally, is increasing. To prevent such incidents in the future, it
is necessary to be able to detect approaching UAVs. Entities to
be protected against UAVs are often stationary, such as airports
or industrial facilities. There is also a growing need for security
and protection against UAVs at high-level events such as the
annual G7 summits. Several vendors already offer technical
solutions which promise to detect all approaching UAVs in or-
der to initiate appropriate countermeasures (examples: Dedrone
DroneTracker, APsystems SKYctrl). Typically, such solutions are
operated stationary and most providers apply a combination of
several sensors. Usually cameras in the visual and IR spectrum
are combined with radar, radio, and acoustic sensors. Neverthe-
less, especially with regard to the future topic of autonomous
driving as well as in the security and military sector, moving
vehicles also require protection against collisions with flying
objects. It would be preferable if the sensors already installed
on the vehicle could be used for this additional task. In using
MODISSA as the experimental system, we developed an ap-
proach for mobile detection and classification of flying objects in
the vicinity of the vehicle. The complete chain of multi-sensorial
data acquisition, data pre-processing, data handling, object de-
tection, sensor alignment, and object classification is performed
in MODISSA in real-time (see Figure 12). Although there are
analogies to the person detection described in the previous sub-
section, UAVs require a different treatment as they are too small
to be classified based on their extent in LiDAR point clouds.
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Fig. 12. Schematic overview of real-time UAV detection, track-
ing, and classification. ROS is used to implement the interac-
tion of sensor data acquisition and sensor control with meth-
ods for real-time data processing.

C.1. Detection of UAVs in 360° 3D LiDAR scans

In the first step, we apply a geometric model-based algorithm to
detect isolated 3D objects of suspicious size in the point clouds
measured by the 360° 3D scanning LiDAR sensors [43]. Since
LiDAR is an active sensing technology, it is independent of
the scene illumination, therefore detection of UAVs is possible
even in low-light conditions and at night. Moreover, the exact
3D position of detected objects is determined automatically:
during direct georeferencing (see Subsection 3.C), all involved
coordinate systems are accurately known, and the 3D position of
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detected objects can be transferred to the global geocoordinate
system.

C.2. 3D tracking of detected objects

The scan pattern of 360° 3D scanning LiDAR sensors can cover
the complete vicinity of the vehicle. Unfortunately, due to the
low spatial resolution of such sensors, a detected object is typ-
ically captured by only a few measurement points, depending
on the respective detection distance (as shown in Figures 13a
and 13b). With such sparse point clouds, classification of the
detected objects in the 3D data is not very promising. To reduce
the rate of false alarms, the detected objects can be tracked in
successive 360° 3D scans. Detections of non-moving objects are
discarded as they may be artifacts in the data, or at least they do
not pose an immediate threat. For detected objects that signifi-
cantly change their position in 3D space, their trajectory can be
analyzed and thus their future position can be predicted.

(a)

(b) (d)

(c) (e)

visual

LW infrared20 m

10 m

(f )

Fig. 13. (a) 3D point cloud representing a UAV in 10 m dis-
tance, (b) in 20 m distance. (c) Visual image with results of
object classification. (d) LWIR image with results of object clas-
sification. (e) Details of c. (f) Details of d.

C.3. Image-based classification “drone versus bird”

Different flying objects of the expected size and with the ex-
pected motion pattern are conceivable. Not only typical kinds
of mini and micro UAVs, but also birds often meet these crite-
ria. Distinguishing between UAVs and harmless birds is the
minimum expectation to the following classification step, but
also an exact identification of the UAV type is desirable. This is
especially useful if specific countermeasures are intended for in-
dividual UAV types, e.g., by jamming their radio control signal.
At present, such object classification tasks are most commonly
realized with machine learning methods, for example convo-
lutional neural networks (CNNs). There exist approaches for
point-cloud-based machine learning (see Subsection 4.B), but
these are not useful for very sparse point clouds.

More promising is an image-based classification based on
high-resolution camera images. Assuming multi-sensor equip-
ment such as MODISSA’s on future cars, cameras can be pointed
at the 3D position of the detected object in a timely manner
and images can be acquired, both visual and thermal infrared
(LWIR). In preparation of the image-based classification step, we
trained a CNN model (Faster R-CNN [44], implemented in a
TensorFlow/Tensorpack framework) using about 15,000 man-
ually annotated visual grayscale images that contained eight
different UAV types and several bird species [45]. Using this

neural network, we achieved good classification results for day-
light scenes (Figure 13c). For object classification in scenes with
poor illumination and especially at night, when object detection
by LiDAR is still feasible, we trained the same CNN model with
LWIR images. The LWIR-based results were found to lag behind
the performance of the visual camera under daylight conditions
(Figure 13d), but as expected, LWIR imaging enables classifying
objects even in low-light scenarios. Regarding 24/7 applicability,
we found the best results with a combination of the LiDAR-
based object detection followed by a combined visual and LWIR
image-based classification, achieving a precision of 96.1% and a
recall of 96.5% in our experiments. Details of the evaluation of
UAV detection and classification performance can be found in
our two previous papers referenced in this subsection [43, 45].

C.4. Lessons learned (MODISSA and UAV detection)

We found that the detection of micro UAVs in LiDAR point
clouds is feasible, even if LiDAR sensors are used that were not
built for this purpose. However, the range of detection is highly
limited by the angular resolution of the LiDAR sensor(s). We
will soon be able to investigate this even more quantitatively, as
replacement of MODISSA’s Velodyne HDL-64E (vertical reso-
lution 0.4°) LiDAR scanners with more recent Ouster OS2-128
(vertical resolution 0.2°) is currently in progress. Another desir-
able technical improvement of LiDAR sensor technology with
regard to its use for monitoring in all spatial directions would
be a significant increase in the vertical field-of-view, which for
the Velodyne HDL-64E is limited to 27°, and in the horizontal
coverage or 360° scanning performance. In this regard, we ex-
pect further advances even in automotive LiDAR technology,
and new products from sensor manufacturers in response.

The comparatively slow mechanical alignment of the cam-
eras mounted on the PTH with the detected flying object is a
bottleneck for real-time UAV identification. This problem could
be solved by using the vehicle-encompassing panoramic cam-
eras, especially if such were also available for the IR spectrum.
Enhancements are currently being made to MODISSA’s sensor
equipment for this purpose as well.

The ROS software environment provides a workbench for
real-time UAV detection and offers flexibility, but also requires
ongoing maintenance. This is not a problem for prototyping
and process development in academia, but a dedicated real-
time environment and implementation will be required for an
operational system.

5. DISCUSSION AND CONCLUSIONS

This paper describes the setup and selected applications of
MODISSA as a mobile laboratory of our research group in the
Department Object Recognition (OBJ) at Fraunhofer IOSB. By
providing our empirical findings, we aim to help other groups
who want to build a similar experimental system. Since this is
the main goal of the paper and since there were many different
aspects to cover, we have detailed our specific lessons learned in
the respective subsections throughout the paper. This was done
as a partial replacement for a separate discussion and summary
in a single concluding section. For this reason, our sensor- and
application-specific experiences related to

• extrinsic system calibration (3.C),

• data protection and anonymization (3.F),

• mobile mapping (4.A.2),
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• real-time object recognition and tracking (4.B.3 and 4.C.4),

are not repeated a second time. We wrap up the paper with a
more general discussion and reflection on MODISSA, and with
some additional thoughts beyond what has already been said in
the paper.

MODISSA enables research in the contexts of area-wide multi-
sensorial data acquisition and direct analysis of the sensor data
for vehicle-related applications. In our selection of sensor tech-
nologies (3.A) and data processing capabilities (3.D and 3.E), we
deliberately choose a balance between the vehicle’s suitability for
research purposes in connection with real-time applications (A)
and also for data collection in surveying and mapping (B). One
may ask what trade-off we made to satisfy both use cases, and
whether this is the kind of configuration everyone should follow.

To start with the second part of the question, the answer is
probably “it depends”. We made compromises that would not
be made when developing a dedicated system. For example,
vehicle-based UAV detection (4.C): If this task were the sole
basis for sensor selection, it would certainly differ from that of
MODISSA. We can give two arguments why the configuration
of MODISSA is nonetheless reasonable:

• Flexibility: As a research group, we need to be broad
and flexible to work on a whole range of current and fu-
ture research projects. Our main research focus is on the
application-oriented development of new methods for sen-
sor data processing, which is why we can compromise on
sensor equipment and do not always require the latest sen-
sors. Of course, we pay attention to current advances in the
respective sensor technologies and make sure that our meth-
ods will be applicable on future operational systems, even
though they were created with an experimental system that
tends to be suboptimal for the respective application.

• Multi-purpose sensors: We expect that almost all future cars
will be equipped with optical sensors for dedicated pur-
poses, e.g., to enable autonomous driving or driver assis-
tance functions. Once this is achieved, it would be obvious
to use these omnipresent sensors for other purposes as well,
e.g., for mapping, change detection, or security tasks. Apart
from ethical questions this raises, there is still the technical
challenge of performing a task with sensors that were not
primarily designed for that purpose. We consider this to be
an interesting field of research.

The MODISSA testbed has already undergone several up-
grades in recent years. We will further evolve it, and MODISSA
will continue to be used for detailed experiments and tests
within a number of projects. Furthermore, we are highly in-
terested in studying applications in which sensor-equipped ve-
hicles automatically exchange information. In the near future,
we may therefore build an additional MODISSA-2, based on our
experiences so far.
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